Qt 4's Generic Algorithms

Материал из Wiki.crossplatform.ru

(Различия между версиями)
Перейти к: навигация, поиск
ViGOur (Обсуждение | вклад)
(Новая: by Morten Sшrvig <blockquote>'''Qt предоставляет ряд алгоритмов на основе шаблона, которые реализуют самые полезные...)
Следующая правка →

Версия 09:02, 10 февраля 2009

by Morten Sшrvig

Qt предоставляет ряд алгоритмов на основе шаблона, которые реализуют самые полезные алгоритмы STL, начиная с версии 2. В этой статье, мы рассмотрим некоторые из алгоритмов, предлагаемых в Qt 4 <QtAlgorithms>.

Содержание

Qt предоставляет собственные алгоритмы потому, что некоторые платформы (например, embedded Linux) не предоставляет реализацию STL. Алгоритмы используются внутри Qt и доступны его пользователям.

Возможно смешивание реализаций STL и Qt контейнеров и алгоритмов. Например, вы можете использовать алгоритм std::find() для QList<T>, или qSort() для std::vector<T>. Это работает потому, что алгоритмы основаны на итераторах STL-стиля, и итераторы контейнеров классов Qt отвечают требованиям STL.

Два вида сортировки

Алгоритмы qSort() и qStableSort()могут быть использованы при сортировке элементов QList<T>, QVector<T> или в любом динамическом C++ массиве. С Qt 4, также возможно определить любой оператор сравнения (вместо operator<()).

Stable сортировка имеет свойство сохранения порядка похожих элементов при сортировке. Это полезно, когда имеешь дело с элементами, которые сравниваются между собой, даже если они не полностью эквивалентны. Например, если сортируется список адресов по фамилии, можно использовать qStableSort (), чтобы сохранить начальный порядок людей с одинаковой фамилией. Обычная сортировка не гарантирует этого.

Линейный и бинарный поиск

Алгоритмы qFind() и qBinaryFind() в качестве параметров получают итераторы диапазона и значение, а возвращают итератор на элемент, который соответствует данному значению, или "end" итератор, если не найдено ни одного элемента. Алгоритм бинарного поиска намного быстрее чем линейный алгоритм, но он может работать только с сортированными диапазонами.

Если значение встречается более одного раза, qFind() вернет итератор на первый элемент, тогда как qBinaryFind() на произвольный.

Для большей гибкости, Qt 4 предоставляет qLowerBound() и qUpperBound(). Как и qBinaryFind(), они работают с сортированным диапазоном. Если значение найдено, qLowerBound() вернет итератор на первый найденный элемент, а qUpperBound() вернет итератор, указывающий на следующий за последним элемент. Если значение не найдено, они вернут итератор на позицию, в которую данный элемент может быть вставлен.

Частый пример использования qLowerBound() и qUpperBound() это проход по всем вхождениям значения:

QStringList list;
QStringList::iterator i, j;
...
i = qLowerBound(list.begin(), list.end(), value);
j = qUpperBound(list.begin(), list.end(), value);
 
while (i != j) {
    processItem(*i);
    ++i;
}

Пример: статическая Map

В этой секции, мы будем использовать бинарный поиск, для реализации "static const" map. Структура данных полностью хранится в памяти и состоит из пары "фамилия, имя", которые отсортированы по фамилии. По сравнению с использованием QMap или QHash, этот подход экономит память и имеет смысл в высоко оптимизированных приложениях или библиотеках.

Сначала, мы определяем структуру для имен, а так же операторы сравнения для поиска вхождения фамилий:

struct Entry {
    const char *familyName;
    const char *givenName;
};
 
bool operator<(const Entry &amp;entry, const QString &amp;family)
{
    return entry.familyName < family;
}
 
bool operator<(const QString &amp;family, const Entry &amp;entry)
{
    return family < entry.familyName;
}

Затем объявляем наши данные:

static const int NumEntries = 4;
static const Entry entries[NumEntries] = {
    { "Deitel", "Harvey" },
    { "Deitel", "Paul" },
    { "Jobs", "Steve" },
    { "Torvalds", "Linus" }
};
static const Entry * const end = entries + NumEntries;

Указатель end отмечает конец массива.

bool contains(const QString &amp;family)
{
    return qBinaryFind(entries, end, family) != end;
}

Теперь, когда все на месте, реализация contains() тривиальна. Так как C++ указатели отвечают критериям STL итераторов произвольного доступа, мы можем использовать их в связке с qBinaryFind().

QString givenName(const QString &amp;family)
{
    const Entry *i = qBinaryFind(entries, end, family);
    if (i == end)
        return "";
    return i->givenName;
}

Функция givenName() возвращает имя человека с данной фамилией. Например, если мы передаем в качестве аргумента "Torvalds", мы получаем "Linus"; если мы передаем "Deitel", функция возвращает "Harvey" или "Paul".

QStringList givenNames(const QString &amp;family)
{
    const Entry *i = qLowerBound(entries, end, family);
    const Entry *j = qUpperBound(entries, end, family);
    QStringList result;
    while (i != j)
        result += (i++)->givenName + (" " + family);
    return result;
}

Функция givenNames() возвращает список людей, принадлежащих определенной семье. Здесь показано использование qLowerBound() и qUpperBound().